2018-07-02
keras
, learn
官方教程,记录以便查阅!
以下代码运行环境为 —— keras[2.2.4], tensorflow[1.11.0]
# $HOME/.keras/keras.json
# default configuration
# avaliable backends: "theano", "tensorflow", or "cntk"
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
from keras import backend as K
# The code below instantiates an input placeholder.
# It's equivalent to tf.placeholder() or th.tensor.matrix(), th.tensor.tensor3(), etc.
inputs = K.placeholder(shape=(2, 4, 5))
# also works:
inputs = K.placeholder(shape=(None, 4, 5))
# also works:
inputs = K.placeholder(ndim=3)
# The code below instantiates a variable. It's equivalent to tf.Variable() or th.shared().
import numpy as np
val = np.random.random((3, 4, 5))
var = K.variable(value=val)
# all-zeros variable:
var = K.zeros(shape=(3, 4, 5))
# all-ones:
var = K.ones(shape=(3, 4, 5))
# Most tensor operations you will need can be done as you would in TensorFlow or Theano:
# Initializing Tensors with Random Numbers
b = K.random_uniform_variable(shape=(3, 4), low=0, high=1) # Uniform distribution
c = K.random_normal_variable(shape=(3, 4), mean=0, scale=1) # Gaussian distribution
d = K.random_normal_variable(shape=(3, 4), mean=0, scale=1)
# Tensor Arithmetic
a = b + c * K.abs(d)
c = K.dot(a, K.transpose(b))
a = K.sum(b, axis=1)
a = K.softmax(b)
a = K.concatenate([b, c], axis=-1)
# etc...
import keras
keras.backend.backend()